

650V enhancement-mode GaN Power Transistor

Description

The series of devices are enhancement mode GaN on silicon power transistors. The properties of GaN allow for high voltage breakdown and high switching frequency. Both conduction and switching power losses are minimized due to an extremely low combination of $R_{\text{DS}(\text{ON})}$ and $Q_g,$ offer improved efficiency over silicon power transistor.

Features

- Ultra fast switching
- No reverse-recovery charge
- Capable of reverse conduction
- Low gate charge, low output charge
- Qualified for standard grade applications according to JEDEC

Application

- High Voltage AC/DC conversion
- High Voltage DC/DC conversion
- High performance power supplies

Key performance Parameters at T_j=25 °C

Paremeter	Value	Unit	Schematic Diagra
V _{DS,max}	650	V	
R _{DS(ON),typ}	120	mΩ	
Q _{G,typ}	2.5	nC	Go (D
I _D	16	А	sко
Q _{rr}	0	nC	- os

Package Marking and Ordering Information

Device	Package	Quantity
CGL65R150B	PQFN	

1,2,3,4	Drain
5,6,9	Source
7	Kelvin Source
8	Gate

Cohenius

CGL65R150B

Absolute Maximum Ratings	(T _C =25°C	unless otherwise noted)
--------------------------	-------------------------------	-------------------------

insolute maximum manifigs (1(-20 ° antess other mise noted)						
Parameter	Symbol	Limit	Unit			
Drain-Source Voltage	V _{DS}	650	V			
Gate-Source Voltage	V _{GS}	-10 to +7	V			
Continuous Drain Current	-	16	А			
Continuous Drain Current($T_c=100 \ \C$)	$I_{\rm D}$	10	А			
Pulse Drain Current(Pulse width 300µs)	I _{DM}	27	А			
Operating Junction Temperature	TJ	-55 to 150	C			
Storage Temperature	T _{STG}	-55 to 150	C			

Thermal Characteristic

Thermal Resistance, Junction-to-Case	$R_{ heta JC}$	1.5	°C/W
Thermal Resistance, Junction-to-Ambient ^a	$\mathbf{R}_{ ext{ hetaJA}}$	62	°C/W
Reflow soldering temperature, MSL3	T_{sold}	260	C

Note:

a. $R_{\theta JA}$ is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board

Electrical Characteristics (T_C=25 $^\circ\!\!\mathbb{C}$ unless otherwise noted)

Static Characteristics

Parameter	Symbol	Symbol Condition		Тур	Max	Unit
Drain-Source Breakdown Voltage	BV _{DSS}		650			V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =650V,V _{GS} =0V,T _j =25°C		2	20	μA
Gate-body Leakage Current	I _{GSS}	V _{GS} =6V,V _{DS} =0V			200	μΑ
Gate Threshold Voltage	$V_{GS(th)}$	V _{DS} =V _{GS} , I _D =3.5mA	0.9		1.3	V
	_	$V_{GS}=6V, I_D=5A, T_J=25 \ C$		120	150	
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =6V, I _D =5A,T _J =150 °C		300		mΩ

Dynamic Characteristics

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Input Capacitance	C _{iss}			91		pF
Output Capacitance	C _{oss}	V_{DS} =400V, V_{GS} =0V,		26		pF
Reverse Transfer Capacitance	C _{rss}	t=1MHz		0.4		pF
Output Capacitance, energy related ¹	C _{o(er)}			33		pF
Output Capacitance, time related ²	C _{o(tr)}	$V_{GS}=0, V_{DS}=0-400V$		45		pF
Output Charge	Q _{oss}			18		nC
Gate Resistance	R_{g}			1.0		Ω

Gate Charge Characteristics

Parameter	Symbol Condition		Min	Тур	Max	Unit
Total Gate Charge	Q_{g}			2.5		nC
Gate-Source Charge	Q _{gs}	V_{DS} =400V,I _D =5A,		0.59		nC
Gate-Drain Charge	Q _{gd}	V _{GS} =6V		0.92		nC

Reverse Diode Characteristics

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Diode Forward Voltage	V_{SD}	V _{GS} =0V, I _D =5A		2.5		V
Reverse Recovery Charge	Q _{rr}			0		nC

Note: 1. Co(er) is a fixed capacitance that gives the same stored energy as Coss while VDS is rising from 0 to 400V

2. Co(tr) is a fixed capacitance that gives the same charge time as C_{oss} while V_{DS} is rising from 0 to 400V

Typical Electrical and Thermal Characteristics

Figure 1. Output Characteristics at 25 °C

Figure 3. Transfer Characteristics

Figure 5. R_{DS(on)}-Gate Voltage at 25 ℃

Figure 2. Output Characteristics at 150 °C

Figure 6. R_{DS(on)}-Gate Voltage at 150 °C

Figure 7. Reverse Characteristics at 25 $^{\rm C}$

Figure 11. Output Charge

Figure 8. Reverse Characteristics at 150 $\,^{\circ}$ C

100 200 300 400 500 600 **V_{DS}(V)**

Figure 12. Coss Store Energy

0

0

Figure 15. Transient Thermal Resistance

10m

1000

100

Figure 16.Power Dissipation

PQFN8×8 Package Information

		SYMBOL	MIN	NOM	MAX	
TOTAL THICKNESS	А	0.8	0.85	0.9		
STAND OFF		A1	0	0.02	0.05	
MOLD THICKNESS		_A2		0.65		
L/F THICKNESS		A3		0.203 REF		
LEAD WIDTH		b	0.95	1	1.05	
RODX SIZE X		D		8 BSC		
BODT SIZE	Y	E	8 BSC			
LEAD PITCH		е	2 BSC			
	×	D2	6.9	7	7.1	
	Y	E2	3.1	3.2	3.3	
LEAD LENGTH		L	0.4	0.5	0.6	
LEAD TIP TO EXPOSED	PAD EDGE	к	2.8 REF			
PACKAGE EDGE TOLERA	NCE	معم	0.1			
MOLD FLATNESS		ccc	0.1			
COPLANARITY		eee	0.08			
LEAD OFFSET		bbb	0.1			
EXPOSED PAD OFFSET	fff		0.1			

Attention:

1. The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics.

2. With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Cohenius hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

3. In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Cohenius in customer's applications.

4. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

5. Any and all Cohenius power products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your representative nearest you before using any Cohenius power products described or contained herein in such applications.