

650V Enhancement-Mode GaN Power Transistor

Description

The series of devices are enhancement mode GaN on silicon power transistors. The properties of GaN allow for high voltage breakdown and high switching frequency. Both conduction and switching power losses are minimized due to an extremely low combination of $R_{DS(ON)}$ and $Q_{\rm g}$, offer improved efficiency over silicon power transistor.

Features

- Ultra fast switching
- No reverse-recovery charge
- Capable of reverse conduction
- Low gate charge, low output charge
- Qualified for standard grade applications according to JEDEC

Application

- High Voltage AC/DC conversion
- High Voltage DC/DC conversion
- High performance power supplies


1	2		3	4
		9		
8	7		6	5

1,2,3,4	Drain
5,6,9	Source
7	Kelvin Source
8	Gate

Key performance Parameters at $T_i=25$ °C

Paremeter	Value	Unit
$V_{DS,max}$	650	V
R _{DS(ON),typ}	170	mΩ
$Q_{G,typ}$	2.0	nC
I_D	13	A
Qrr	0	nC

Package Marking and Ordering Information

Device	Package	Quantity
CGL65R190B	PQFN	

Absolute Maximum Ratings ($T_C=25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	$V_{ m DS}$	650	V
Gate-Source Voltage	V_{GS}	-10 to +7	V
Continuous Drain Current		13	A
Continuous Drain Current(T _c =100 ℃)	I_{D}	8	A
Pulse Drain Current(Pulse width 300µs)	I_{DM}	20	A
Operating Junction Temperature	T_J	-55 to 150	$^{\circ}$
Storage Temperature	T_{STG}	-55 to 150	$^{\circ}$

Thermal Characteristic

Thermal Resistance, Junction-to-Case	$R_{ heta JC}$	1.5	℃/W
Thermal Resistance, Junction-to-Ambient ^a	$R_{ heta JA}$	62	°C/W
Reflow soldering temperature, MSL3	$T_{ m sold}$	260	С

Note:

a. $R_{\theta JA}$ is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board

Electrical Characteristics ($T_C=25^{\circ}C$ unless otherwise noted)

Static Characteristics

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	BV_{DSS}		650	-		V
Zero Gate Voltage Drain Current	I_{DSS}	V _{DS} =650V,V _{GS} =0V,T _j =25°C	1	2	20	μΑ
Gate-body Leakage Current	I_{GSS}	$V_{GS}=6V, V_{DS}=0V$			200	μΑ
Gate Threshold Voltage	$V_{GS(th)}$	V _{DS} =V _{GS} , I _D =5mA	0.95		1.50	V
Drain-Source On-State Resistance	_	$V_{GS}=6V$, $I_D=5A$, $T_J=25$ °C		170	190	
	R _{DS(ON)}	V _{GS} =6V, I _D =5A,T _J =150 ℃		390		mΩ

Cohenius

Dynamic Characteristics

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Input Capacitance	C _{iss}	Y 400Y/Y/ 0Y/		74		pF
Output Capacitance	C_{oss}	$V_{DS}=400V, V_{GS}=0V,$		24		pF
Reverse Transfer Capacitance	Crss	f=1.0MHz		0.36		pF
Output Capacitance, energy related ¹	C _{o(er)}			28		pF
Output Capacitance, time related ²	C _{o(tr)}	$V_{GS} = 0, V_{DS} = 0-400V$		37		pF
Output Charge	Qoss			15		nC
Gate Resistance	$R_{\rm g}$			1.0		Ω
Turn-on Delay Time	t _{d(on)}	100111 51		12		nS
Turn-on Rise Time	$t_{\rm r}$	$V_{DD}=400V,I_{D}=5A$ $V_{GS}=0-6V,R_{on}=10\Omega,$		7		nS
Turn-Off Delay Time	$t_{d(off)}$			11		nS
Turn-Off Fall Time	t_{f}	$R_{off}=3\Omega$, See Fig 17.		9		nS

Gate Charge Characteristics

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Total Gate Charge	Q_{g}			2.0		nC
Gate-Source Charge	Q_{gs}	$V_{DS}=400V,I_{D}=5A,$		0.39		nC
Gate-Drain Charge	$Q_{ m gd}$	$V_{GS}=6V$		0.67		nC

Reverse Diode Characteristics

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Diode Forward Voltage	V_{SD}	$V_{GS}=0V$, $I_D=3A$		2.5		V
Reverse Recovery Charge	Qrr			0		nC

Note: 1. Co(er) is a fixed capacitance that gives the same stored energy as C_{oss} while V_{DS} is rising from 0 to 400V

2. Co(tr) is a fixed capacitance that gives the same charge time as C_{oss} while V_{DS} is rising from 0 to 400V

Typical Electrical and Thermal Characteristics

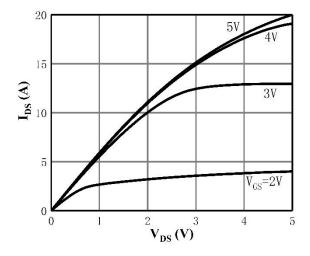


Figure 1. Output Characteristics at 25 °C

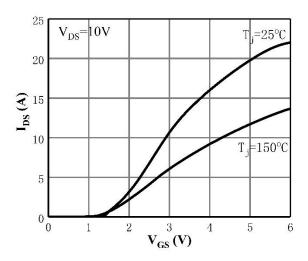


Figure 3. Transfer Characteristics

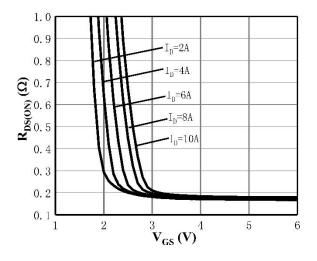


Figure 5. $R_{DS(on)}$ -Gate Voltage at 25 °C

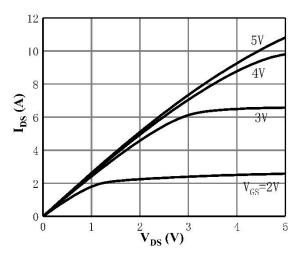


Figure 2. Output Characteristics at 150 $^{\circ}$ C

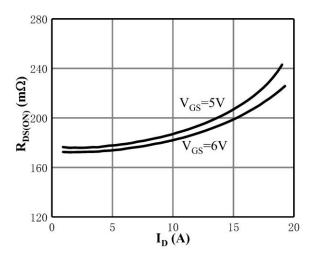


Figure 4. R_{DS(on)}-Drain Current

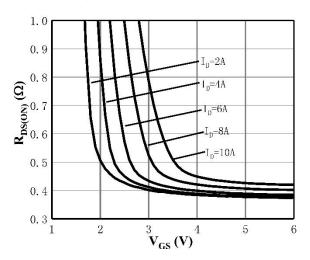


Figure 6. $R_{DS(on)}$ -Gate Voltage at 150 °C

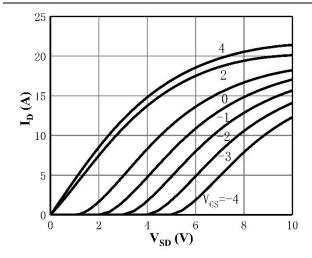
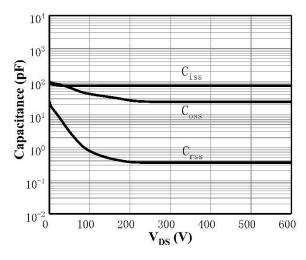



Figure 7. Reverse Characteristics at 25 $^{\circ}$ C

Figure 8. Reverse Characteristics at 150 °C

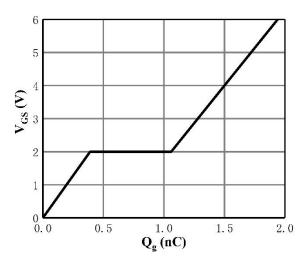
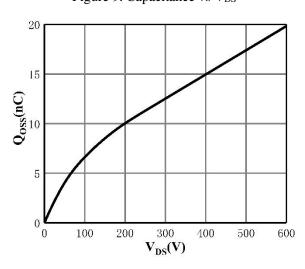



Figure 9. Capacitance vs V_{DS}

Figure 10. Gate Charge

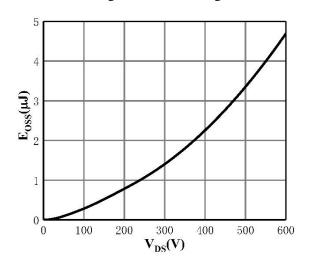


Figure 11. Output Charge

Figure 12. Coss Store Energy

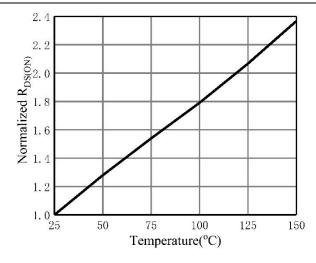


Figure 13. Normalized $R_{DS(ON)}$ vs T_J

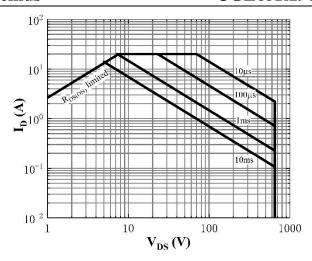


Figure 14. Safe Operating Area

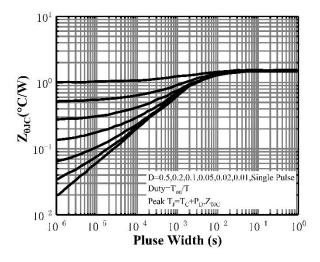


Figure 15. Transient Thermal Resistance

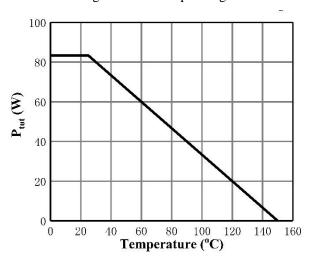
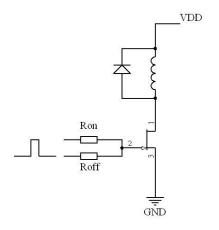



Figure 16.Power Dissipation

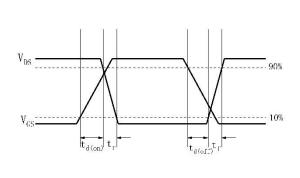
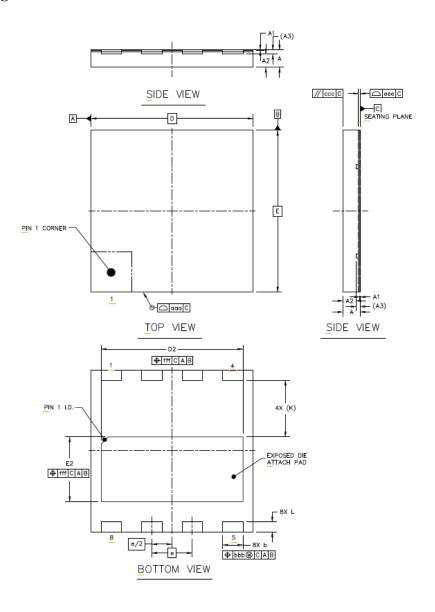



Figure 17. Switching Time Measurement

PQFN8×8 Package Information

		SYMBOL	MIN	MAX		
TOTAL THICKNESS A			0.8	0.85	0.9	
STAND OFF	STAND OFF		0	0.02	0.05	
MOLD THICKNESS		_A2		0.65		
L/F THICKNESS		_A3		0.203 REF		
LEAD WIDTH		Ь	0.95	1	1.05	
BODY SIZE	X	D		8 BSC		
BODT SIZE Y		E	8 BSC			
LEAD PITCH	LEAD PITCH			2 BSC		
EP SIZE	X	D2	6.9	7	7.1	
LI SIZE	Y	E2	3.1	3.2	3.3	
LEAD LENGTH	L	0.4	0.5	0.6		
LEAD TIP TO EXPOSED	PAD EDGE	K		2.8 REF		
PACKAGE EDGE TOLERANCE		aaa		0.1		
MOLD FLATNESS		ccc	ccc 0.1			
COPLANARITY		eee	0.08			
LEAD OFFSET		bbb	0.1			
EXPOSED PAD OFFSET		fff		0.1		

Attention:

- 1. The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics.
- 2. With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Cohenius hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.
- 3. In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Cohenius in customer's applications.
- 4. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.
- 5. Any and all Cohenius power products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your representative nearest you before using any Cohenius power products described or contained herein in such applications.